

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

UCI-AM-09-049

^`nrfpfqflk=oÉëÉ~êÅÜ=

péçåëçêÉÇ=oÉéçêí=pÉêáÉë=
=

Emerging Issues in the Acquisition of Open Source Software

within the US Department of Defense

17 June 2009

by

Dr. Walt Scacchi, Senior Research Scientist, and

Dr. Thomas Alspaugh, Assistant Professor

Institute for Software Research

University of California, Irvine

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 JUN 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Emerging Issues in the Acquisition of Open Source Software within the
US Department of Defense

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Irvine,Institute for Software
Research,Irvine,CA,92697-3455

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
U.S. Government or Federal Rights License

14. ABSTRACT
In the past five or so years, it has become clear that the U.S. Air Force, Army, and Navy have all
committed to a strategy of acquiring software-intensive systems that require or utilize an ?open
architecture? (OA) and ?open technology? (OT) that may incorporate OSS technology or OSS
development processes. There are many perceived benefits and anticipated cost savings associated with an
OA strategy. However, the challenge for acquisition program managers is how to realize the savings and
benefits through requirements that can be brought into system development practice. As such, the central
problem we examine in this paper is to identify principles of software architecture and OSS copyright
licenses that facilitate or inhibit the success of an OA strategy when OSS and open APIs are required or
are otherwise employed. By examining and analyzing this problem, we can begin to identify what
additional requirements may be needed to fulfill an OA strategy during program acquisition.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented in this report was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
e-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Emerging Issues in the Acquisition of Open Source Software within
the U.S. Department of Defense1

Walt Scacchi and Thomas A. Alspaugh

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3455 USA

{wscacchi, alspaugh}@ics.uci.edu

1-949-824-4130, 1-949-824-1715 (fax)

April 2008

Abstract
In the past five or so years, it has become clear that the U.S. Air Force, Army, and Navy have all
committed to a strategy of acquiring software-intensive systems that require or utilize an “open
architecture” (OA) and “open technology” (OT) that may incorporate OSS technology or OSS
development processes. There are many perceived benefits and anticipated cost savings
associated with an OA strategy. However, the challenge for acquisition program managers is how
to realize the savings and benefits through requirements that can be brought into system
development practice. As such, the central problem we examine in this paper is to identify
principles of software architecture and OSS copyright licenses that facilitate or inhibit the
success of an OA strategy when OSS and open APIs are required or are otherwise employed. By
examining and analyzing this problem, we can begin to identify what additional requirements
may be needed to fulfill an OA strategy during program acquisition.

Biographies
Walt Scacchi is a senior research scientist and research faculty member at the Institute for
Software Research, University of California, Irvine. He received a Ph.D. in Information and
Computer Science from UC Irvine in 1981. From 1981-1998, he was on the faculty at the
University of Southern California. In 1999, he joined the Institute for Software Research at UC
Irvine. He has published more than 150 research papers and has directed 45 externally funded
research projects. In 2007, he served as General Chair of the 3rd IFIP International Conference on
Open Source Systems (OSS2007), Limerick, IE.

Thomas Alspaugh is an Assistant Professor of Informatics in the Donald Bren School of
Information and Computer Sciences, University of California, Irvine. He received his Ph.D. in
Computer Science from North Carolina State University in 2002. His research interests are in
software engineering, and focus on informal and narrative models of software at the
requirements level. Before completing his Ph.D., he worked as a software developer, team lead,
and manager at several companies (including IBM and Data General) and as a computer scientist

1 Paper for the 5th Annual Acquisition Research Symposium, Monterey, CA, 14-15 May 2008

1

at the Naval Research Laboratory on the Software Cost Reduction project, also known as the A-
7E project.

Introduction

Interest within the U.S. Department of Defense (DoD) and military services in free and open
source software (OSS) first appeared in the past five or so years [cf. Bollinger 2003]. More
recently, it has become clear that the U.S. Air Force, Army, and Navy have all committed to a
strategy of acquiring software-intensive systems across the board that require or utilize an “open
architecture” (OA) and “open technology” (OT) that may incorporate OSS technology or OSS
development processes [Herz and Scott 2007]. Why?

According to Riechers [2007], the Air Force sees that with its software-intensive systems: there
is increasing complexity of the software (code) itself; they may be “held hostage” to proprietary
legacy components; they seek more timely delivery of new solutions, and acquisitions and
requirements take too long. So the Air Force is moving towards an OT development approach
that embraces open standards, open data, open program interfaces, best-of-breed OSS, and OSS
development practices.

According to Brig. Gen. Justice [2007a, 2007b], the Army seeks to move away from closed
source software, expensive software upgrades, vendor lock-in, and broadly exploited security
weaknesses. Subsequently, the Army seeks to adopt OSS because it may realize direct cost
savings (compared to proprietary closed source software), gain access to source code to better
develop domain and IT expertise, enable the transition to Web 2.0 technologies, and enable
rapid injection of innovative concepts from diverse R&D/IT communities into systems for
tactical command and control (C3T), future combat systems, enterprise information systems, and
others [Starett 2007].

Last, according to Guertin [2007], the Navy seeks to mitigate the spiraling costs of weapon
systems through adoption of OA [Navy 2006], as well as the adoption of open business models
for the acquisition and spiral development of new systems. This may, therefore, necessitate better
alignment of the system requirements and program acquisition communities, as well as better
alignment of industry and academic partners who engage in software-focused research and
development activities with DoD support.

The central problem we examine and explain in this paper is to identify principles of
software architecture and OSS copyright licenses that facilitate or inhibit the success of
the OA strategy when OSS and open APIs are required or otherwise employed. This is the
knowledge we seek to develop and deliver. Without such knowledge, program acquisition
managers and Program Executive Offices are unlikely to acquire software-intensive systems that
will result in an OA that is clean, robust, transparent and extensible. This may frustrate the
ability of program managers or program offices to realize faster, better, and cheaper software
system acquisition, development, and post-deployment support.

2

On a broader scale, this paper seeks to explore and answer the following kinds of research
questions: How does the use of OSS components and open APIs (a) facilitate, or (b) inhibit the
ability to develop and deliver an OA software system? How do the requirements for OA affect
system acquisition? How do alternative OSS licenses facilitate or inhibit the development of OA
systems? How does the use of OSS components and open APIs manifest requirements that (a)
facilitate, or (b) inhibit program acquisition?

Last, this paper may help establish a foundation for how to analyze and evaluate dependencies
that might arise when seeking to develop software systems that should embody an OA when
different types of OSS components or OSS component licenses are being considered for
integration. Finally, we believe there are new ways for determining requirements for how best to
develop software systems with OSS [Scacchi 2002] that can interact with acquisition processes
[Choi and Scacchi 2001] in ways that are not apparent within current public perspectives for OA
based on OSS [cf. Guertin 2007, Justice 2007a, 2007b, Riechers 2007].

In the remainder of this paper, we examine what makes achieving OA and OT difficult from a
technical and program management/acquisition perspective, with respect to understanding what
OA incorporating modern OSS entails from a software architecture standpoint, software licensing
regimes, and how/where they interact. We start by providing some additional background on
“openness,” and then follow with a description and analysis of open software architecture
concepts and of open source software licenses. This gives rise to a discussion that identifies
some new requirements that must be addressed by program managers in acquisitions that are
intended to realize an OA software system. We then close with a review of the conclusions that
follow.

Background

Across the three military services within the DoD, OA means different things and is seen as the
basis for realizing different kinds of outcomes. Thus, it is unclear whether the acquisition of a
software system that is required to incorporate an OA, as well as utilize OSS technology and
development processes [cf. Wheeler 2007], for one military service will realize the same kinds of
benefits anticipated for OA-based systems by another service. Somehow, DoD acquisition
program managers must make sense of or reconcile such differences in expectations and outcomes
from OA strategies in each service or across the DoD. Yet, there is little explicit guidance or reliance
on systematic empirical studies—for how best to develop, deploy, and sustain complex software-
intensive military systems—in the different OA and OSS presentations and documents that have so
far been disseminated [cf. Weathersby 2007]. Instead, what mostly exists are narratives that
serve to provide ample motivation for and belief in the promise and potential of OA and OSS,
without consideration of what socio-technical challenges may lie ahead in realizing OT, OA, and
OSS strategies.

In characterizing the challenges facing acquisition of OA and OSS systems, we have found it
helpful to compare the new property of “Openness” with the familiar property “Correctness”:
we summarize this with the maxim “open is the new correct.”

3

Acquisition officers are familiar with the challenges of acquiring systems that meet the necessary
requirements with regard to correct behavior: the correctness of the overall system depends on
the correctness of its components and how they are interconnected; correctness is a relative
quality—in that a system may meet its behavioral requirements to a greater or lesser degree—but
almost by definition a system is never completely correct, and its degree of correctness cannot be
definitely established in a finite time; a lack of correctness has an effect when that part of the
system is executing; and the correctness of a system in meeting its requirements is determined
by engineers and the system’s users through testing it and using it. Openness is both similar to
and different from correctness, however. We argue that the openness of a system depends, like
correctness, on the system’s components, how they are interconnected, and how they are
configured into an overall software system architecture. Unlike for correctness, however, a
system may be completely open or may fail to be open in various ways; indeed, because the
software elements that define a system are finite and enumerable, its openness can, in principle,
be determined. Also unlike correctness, a system is either open or not open even when it is not
operating, and the DoD may pay the consequences of a lack of openness (in the form of license
fees) before the system is ever used, or even if it is never used. Finally, unlike for correctness,
openness may be determined ultimately by the province of lawyers and policy-makers, not of
engineers or users.

We believe that a primary challenge to be addressed is how to determine whether a system,
composed of subsystems and components each with specific OSS or proprietary licenses, and
integrated in the system’s planned configuration, is or is not open, and what license(s) apply to
the configured system as a whole. This challenge comprises not only evaluating an existing
system, but planning for a proposed system to ensure that the result is “open” under the desired
definition, and that only the acceptable licenses apply—and also understanding which licenses
are acceptable in this context. Because there are a range of kinds of licenses, each of which may
affect a system in different ways, and because there are a number of different kinds of OSS-
related components and ways of combining them that affect the licensing issue, a first necessary
step is to understand kinds of software elements that constitute a software architecture, and what
kinds of licenses may encumber these elements or their overall configuration.

OA seems to simply suggest software system architectures incorporating OSS components and
open application program interfaces (APIs). But not all software system architectures
incorporating OSS components and open APIs will produce OAs, since OAs depend on: (a)
how/why OSS and open APIs are located within the system architecture, (b) how OSS and open
APIs are implemented, embedded, or interconnected, (c) whether the copyright (Intellectual
Property) licenses assigned to different OSS components encumber all/part of a software
system's architecture into which they are integrated, and (d) many alternative architectural
configurations and APIs that may or may not produce an OA [cf. Antón and Alspaugh 2007,
Diallo, et al., 2007, Scacchi 2007]. Subsequently, we believe this can lead to difficult situations:
if program acquisition stipulates a software-intensive system with an OA and OSS, then the
resulting software system may or may not embody an OA. This can occur when the architectural
design of a system constrains system requirements—that is, what requirements can be satisfied
by a given system architecture, when requirements stipulate specific types or instances of OSS
(e.g., Web browsers, content management servers) can be employed, or what architecture style
[Bass, Clements, and Kazman 2003] is implied by given system requirements.

4

Thus, given the goal of realizing an OA and open technology strategy [cf. Herz and Scott 2007]—
together with the use of OSS components and open APIs—it is unclear how to best align program
acquisition, system requirements, software architectures, and OSS license regimes to achieve this
goal.

Understanding open software architecture concepts

A system intended to embody an open architecture using open software technologies like OSS
and APIs does not clearly indicate what possible mix of software elements may be configured
into it. To help explain this, we first identify what kinds of software elements are included
in common software architectures, whether they are open or closed [cf. Bass, Clements,
Kazman 2003].

 Software source code components – these include the computer programs that direct the
intended computation, calculation, control flow, and data manipulation. These are
programs for which the source code is open for access, review, modification, and possible
redistribution by its developers. However, there are at least four different forms of
computer programs these days.

■ standalone programs – these are the computer programs that we have long
understood, often as isolated systems or monolithic applications that accept data
inputs, manipulate and transform this data, and produce outputs (calculated
results, information displays, control signals emitted to devices, etc.) under user-
or system-administered control.

■ libraries, frameworks, or middleware – these are collections of software functions,
no one of which is typically a standalone program. Such software is often
expected to be routinely reused in many different systems or applications. This
software may also be used to provide a layer of abstraction that hides source code
implementation details so as to improve subsequent software portability, or to
hide alternative software implementations.

■ inter -application script code – this software is used to combine independent
programs together by associating their respective inputs, outputs, and control
variables. This software is sometimes called “glue code” to suggest its primary
function: to connect programs together through the use of “pipes” and/or “filters,”
which control or modulate the directed flow of information between the
associated programs. Such scripts may be as short a a single line of code, but on
the other hand, they can be as large as thousands (even hundreds of thousands)
source lines of code.

■ intra -application script code – this software is similar in spirit to inter-application
script code, except the focus is on organizing, controlling, and manipulating input
and output data/presentations from remote Web services/repositories for view and
end-user interaction at the human-computer interface. Popular Web application
systems like the Firefox Web browser may be scripted to provide animated user
interfaces coded in languages like Javascript, ActionScript, or PhP to create Rich
Internet Applications [Feldt 2007] or “mashups” [Nelson and Churchill 2006].

5

Such scripts may be as short as a single line of code, but on the other hand, they
can be as large as thousands (even tens of thousands) source lines of code.
However, custom intra-application software languages may also be designed to
create domain-specific languages (e.g., XUL for Firefox Web browser [Feldt
2007]) for rapid construction of persistent/disposable software functions (or
macros), which enable increased software development productivity or end-user
programming.

 Executable components – These are programs for which the software is in binary form,
and its source code may not be open for access, review, modification, and possible
redistribution. Executable binaries are rarely treated as open, since they may also be
viewed as “derived works” [Rosen 2005] that result from the compilation or
interpretation of software source code—which may not be available, or may be proprietary.
Executable components are widespread and common in every computing system, even in
OSS systems. However, executable components may also only become part of a system
during its execution through dynamic (or run-time) linking. Finally, though their binary
form makes them available for execution through external linkage to some other
program, such form also makes figuring out what they do very difficult, if they have
little/no documentation available.

 Application program interfaces/APIs – These software interfaces are generally not
programs that can be executed, but they enable software system developers to access
their functionality without direct access to their source code. The availability of
externally visible and accessible APIs to which independently developed components can
be connected to is the minimum required to form an “open system” [Meyers and
Obendorf 2001]. Often, the APIs are treated as if they enable direct access to the
otherwise hidden software, but a closed software system may employ a layer of abstract
APIs as “shims” that better align multiple program interfaces or security barriers that
seek to protect disclosure of private or proprietary information. Such information may
include the details of actual software function interfaces (which may be designated as
“trade secrets”), or hidden software functions that may only be known to software
developers with secure, restricted code access.

 Software connectors – These may be software either from libraries, frameworks, or
application script code whose intended purpose is to provide a standard or reusable way
of associating programs, data repositories, or remote services through common
interfaces. These may include software technologies that constitute a “software bus” for
plugging in independent software modules (programs or functions), network protocols
that enable and control the flow of data between remote programs across a LAN or
Internet, or even a database management system (DBMS) that is used to enable data
sharing and storage among programs connected to the DBMS. The High Level
Architecture (HLA) is an example of a software connector scheme [Kuhl, Weatherly,
Damann 2000], as are CORBA, Microsoft's .NET, and Enterprise Java Beans.

 Configured system or sub-system – These are software systems built to conform to an
explicit architectural specification. They include software source code/binary
components, APIs, and connectors that are organized in a way that may conform to a
known “architectural style” such as the Representational State Transfer [Fielding and
Taylor 2002] for Web-based client-server applications, or may represent an original or ad

6

hoc architectural pattern [Bass, Clements, Kazman 2003]. All of the software elements,
and how they are arranged and interlinked, can all be specified, analyzed, and
documented using an Architecture Description Language [Bass, Clements, and Kazman
2003] and ADL-based support tools. Beyond this, any or all of the software elements in a
configured system or sub-system may be OSS or not. In contrast to a derived work, a
configured system or sub-system is considered a “collective work,” and as such is
subject to its own copyright and license protection as intellectual property, whether open
or closed [Rosen 2005, St. Laurent 2004]. However, such intellectual property
declaration cannot employ a license regime on the overall system that supercedes or
controverts the license protections/obligations of the individual software elements that
constitute the configured system or sub-system.

Figure 1 provides an overall view of a hypothetical software architecture for a configured system
that includes and identifies each of the software elements above. It also includes open
source (e.g., Gnome Evolution) and closed source software (WordPerfect) components. In
simple terms, the configured system consists of software components (grey boxes in the Figure)
that include a Mozilla Web browser, Gnome Evolution e-mail client, and WordPerfect word
processor that run on a Linux operating system that can access, file, and print other remote
networked servers (e.g., Apache Web server). These components are interrelated through a set of
software connectors (ellipses in the Figure) that connect the interfaces of software components
(small white boxes attached to a component) that are linked together. Modern day enterprise
systems or command and control systems will generally have more complex architectures and a
more diverse mix of software components than shown in the figure here. As we examine next,
this simple architecture raises a number of OSS licensing issues that mitigate the extent of
openness that is realized in a configured OA.

Understanding open software licenses

A particularly knotty challenge is the problem of licenses in OSS and OA. There are a number
of different OSS licenses, each with different rights and obligations attached to software
components that bear it. External sources are available that describe and explain the many
different licenses that are now in use with OSS [OSI 2008, Rosen 2005, St. Laurent 2004]. As
such, we will not delve into the details or variations among the many licenses, except to note a
few key properties that should be recognized as potentially impacting the openness of a
configured software system and, therefore, whether it can realize an OA.

The GNU General Public License (GPL), the most widely used OSS license, implements a
strong copyleft, requiring that the software source code be distributed and that any modified
versions also be licensed under GPL [Rosen 2005, St. Laurent 2004]. The GPL—along with some
other OSS licenses like the Mozilla Public License (MPL) and others (CPL, OSL [OSI 2008,
Rosen 2005])—are identified as “reciprocal” licenses that in some way transfer license obligations
to derivative software systems. A software system component or connector based on existing

7

Figure 1. Software components, connectors, interfaces arranged in an overall software system
configuration. Note: Components, connectors, and overall system configuration may be subject to

different software licenses.

8

OSS inherits the obligations or restrictions of the originating OSS. In contrast, an academic
freedom license, such as the BSD, MIT, or Apache license, permits derivative software works to
be incorporated into a proprietary, closed-source product [Rosen 2005, St. Laurent 2004].
Academic licenses are identified as “unrestrictive” so that software components or connectors
derived from OSS covered by an academic freedom license need not adhere to the obligations of
the originating OSS.

What license applies to an OA system containing some GPL components with a reciprocal
license and some BSD components with unrestrictive license, or perhaps even some proprietary
software license? In Figure 1, we see at least three software components that have different
software licenses: the Mozilla Web browser (subject to the MPL), Gnome Evolution e-mail client
(subject to the GPL), and WordPerfect word processor (subject to a proprietary software license).
The license problem is further complicated by components designed to operate on license
requirements. For example, a software shim may be a library function, abstract interface, or
script code designed to serve as a connector between two applications that have different
licenses, so that neither application’s license is violated and neither application is “infected” by
the restrictions or obligations of the other’s license. In this regard, a software connector is a
configured system (or OA) element specifically designed to modulate the license requirements
imposed on the components it connects. Figure 1 follows the links between the Mozilla Web
browser, Gnome Evolution, and WordPerfect. The requirements imposed by a component’s
license is thus affected by the architectural structure of the system containing it, and vice versa.
Figures 2a and 2b provide suggested mappings of license obligations that can constrain a
configured software system derived from OSS components and connectors covered by a specific
OSS license.

Figure 2a. Mapping Reciprocal OSS licenses to derivative works [Rosen 2005]

9

Figure 2b. Mapping Unrestrictive Academic to Reciprocal OSS licenses [Rosen 2005]

Original footnotes from [Rosen 2005, p. 251].

The question of what license covers a specific configured system is difficult to answer,
especially if the system or sub-system is already in operation [cf. Kazman and Carrière 1999].
We offer the following considerations to help make this clear. For example, a Mozilla/Firefox
Web browser covered by the MPL may download and run intra-application script code that is
covered by a different license. If this script code is only invoked via dynamic run-time linking
(or invocation), then there is no transfer of license restrictions or obligations. However, if the
script code is integrated into the source code of the Web browser as persistent part of an
application, then it could be viewed as a configured sub-system that may need to be accessed for
license transfer implications. Another different kind of example can be anticipated with
application programs (like Web browsers, e-mail clients, and word processors) that employ Rich
Internet Applications or mashups that entail the use of content (e.g., textual character fonts or
geographic maps) that is subject to copyright protection, if the content is embedded in and
bundled with the scripted application sub-system.

Next, as software system configuration or OA is intended to be adapted to incorporate new
innovative software technologies that are not yet at hand, then we recognize that these OSS-
based system configurations will evolve over time at ever-increasing rates [Scacchi 2007],

10

components will be replaced, and inter-component connections will be rewired or remediated
with new connector types. As such, sustaining the openness of a configured software system will
become part of ongoing system support, analysis, and validation. This, in turn, may require
ADLs to include OSS licensing properties on components, connectors, and overall system
configuration, as well as in appropriate analysis tools [cf. Bass, Clements, and Kazman 2003].

Moving forward, analyses of OSS licenses by intellectual property lawyers may suggest a way
out of the OSS licensing/relicensing mess at hand. Note, we are not lawyers, so we are not
offering any legal advice. Feel free to consult legal counsel if or when appropriate for guidance
on license interpretation or enforcement conditions. However, we offer some encouraging words
for consideration here. Rosen [2005, p. 252] observes OSS license incompatibilities can
prevent OSS from being freely used and combined. The multiplicity of such licenses only
makes the problem worse (review the tables in Figure 2a and 2b). Copyright law and contract
law, which cover the interpretation and enforcement of OSS licenses, are such that OSS developers
or distributors (e.g., Defense contractors) cannot simply relicense copyright-protected OSS
unless they have permission to do so. This, in turn, may mitigate some requirements shaping the
development and deployment of military software applications that are supposed to embody an
OA.

Terms and conditions for reciprocity obligations in licenses, like the GPL and others, apply to
OSS that is modified and redistributed, and not to software that may be modified but not
distributed to others outside of the organization. Also, this raises the questions of what
constitutes “distribution” or “redistribution” for a government organization that acquires access
rights to all software and data developed under contract. Similarly, for government employees
whose work is not protected by copyright (and thus may enter into the public domain), this
may pose new opportunities for adhering to or working around OSS license restrictions or
obligations.

Finally, as Rosen [2005, p. 253] observes, by merely aggregating (or configuring) software from
different sources and treating such software as black boxes (e.g., no intra-application scripting
allowed and/or employ dynamic run-time linkage), it is possible to technically avoid creation of
derivative works that inherit the license restrictions or obligations of the software elements
involved. Subsequently, Rosen finds that OSS license incompatibilities are inconveniences
rather than barriers; ultimately, one can get around almost all licensing restrictions by being
sufficiently creative and inventive. Thus, there is a need to provide guidance to both program
acquisition officers, Program Executive Offices, and Defense contractors for how to specify
requirements for military software applications that best achieve a cost-effective level of
openness that can enable the maximum possible benefits anticipated. Yet, without explicit
guidance or guidelines, we cannot assume that OA will just happen because of the use of
OSS elements and open systems APIs.

With this in mind, we suggest some initial guidelines for such requirements.

Discussion

The relationship among open technology, open architecture, and open source software
requirements, and program acquisition is poorly understood. We can call such a view of OSS

11

product-oriented. Alternatively, we can view OSS as (b) primarily a set of development
processes, work practices, project community activities (code sharing, review, modification,
redistribution), and multi-project software ecosystems that produce OSS systems and
components. This view of OSS as an integrated web of people, processes, and organizations
(including project teams operating as virtual organizations [Noll and Scacchi 1999, Crowston
and Scozzi 2002]) is production-oriented (including production processes, production
organizations, production people, and governance over software production [Scacchi 2007,
Scacchi, Feller, et al. 2006, Scacchi and Jensen 2008]). The requirements for (a) are not the same
as for (b); thus, program acquisition targeting (a) may fail to realize the benefits, capabilities,
or constraints engendered by (b), and vice versa. Therefore, decision-makers must understand
how to identify an optimal mix of OSS within OA as both products and production processes,
practices, community activities, and multi-project (or multi-organization) software ecosystem.

The success of the DoD’s OA and OSS programs in achieving the positive qualities associated
with OSS depends on the socio-technical context in which a system is developed and used. The
stakeholders and users of an OSS system typically include the developers of that system; they
know its goals and requirements implicitly, and can adjust the system according to their
understanding of the context in which it is used. If the DoD is to achieve quick response, rapid
adaptation, and context-appropriate use of OSS, it may be necessary to have a representative
group of the personnel who are to use and adapt it to the needs they see around them, as OSS
developers for that system.

Following our analysis above, it appears there are a new set of requirements that are
emerging that will need to be addressed in any acquisition of a software-intensive system that is
stipulated to employ an OA that accommodates OSS components or connectors. Identifying
specific requirements for a given program acquisition or system development contract can
benefit from consideration of the the following guidelines for how best to realize an OA:

● Determining how much openness is required or desired.

● Identifying guidelines and incentives for software development contractors that
encourage them to develop, provide, and distribute/deploy OA systems with OSS
components, connectors, and configurations that minimize conflicting OSS license
obligations.

● Determining the restrictions, if any, of the OSS licenses used by different software
system components, connectors, or configurations within a OA system.

● Identifying alternative OSS component, connector, or configuration candidates that may
satisfy a specified overall system architecture.

● Determining scenarios that help reveal whether there are OSS licensing conflicts for a
given set of OSS components, connectors, or configuration.

● Identifying and analyzing any OSS licensing obligations that must be satisfied for the
resulting system to be available for redistribution.

● Identifying and validating OSS license conformance criteria for configured systems

12

intended for redistribution.

Further elaboration on these guidelines is subject to additional research, application, and
refinement. However, they do provide a useful starting point for discussion, debate, and action in
program acquisition.

Conclusions

The relationship among open technology, open architecture, and open source software
requirements, and program acquisition is poorly understood. In recent OA presentations, OSS is
viewed as primarily a source for low-cost/free software systems or software components. Thus,
given the goal of realizing an OA and open technology strategy [cf. Herz and Scott 2007],
together with the use of OSS components and open APIs, it is unclear how to best align program
acquisition, system requirements, software architectures, and OSS license regimes to achieve this
goal. Subsequently, the central problem we examined in this paper was to identify principles of
software architecture and OSS copyright licenses that facilitate or inhibit how best to insure the
success of an OA strategy when OSS and open APIs are required or otherwise employed.

Consideration of emerging issues in the acquisition of OSS within the U.S. Department of
Defense is an important problem for acquisition research at this time. The goal of this paper is to
help establish a foundation for how to analyze and evaluate dependencies that might arise when
decision-makers are seeking to develop software systems that should embody an OA, when
different types of OS components or OSS component licenses are being considered for integration.

ACKNOWLEDGMENTS
The research described in this report has been supported by grant #0534771 from the U.S.
National Science Foundation, and from the Acquisition Research Program at the Naval
Postgraduate School. No endorsement implied.

References
Alspaugh, T.A., & Antón, A.I. (2007). Scenario Support for Effective Requirements,
Information and Software Technology, 50(3), 198-220.

Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice, 2nd Edition,
Addison-Wesley Professional, New York.

Bollinger, T. (2003). Use of Free and Open-Source Software (FOSS) in the U.S. Department of
Defense, The MITRE Corporation, 2 January. Available at
http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

Choi, J.S., & Scacchi, W. (2001). Modeling and Simulating Software Acquisition Process
Architectures, J. Systems and Software, 59(3), 343-354, 15 December.

Crowston, K., & Scozzi, B. (2002). Open Source Software Projects as Virtual Organizations.
IEE ProceedingsðSoftware, 149, 1, 3-17.

13

http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

Diallo, M., Sim, S.E., & Alspaugh, T.A. (2007). The Mythical Requirements-Architecture
Gap, submitted to European Software Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE 2007).

Feldt, K. (2007). Programming Firefox: Building Rich Internet Applications with XUL, O'Reilly
Press, Sebastopol, CA.

Fielding, R., & Taylor, R.N. (2002). Principled Design of the Modern Web Architecture, ACM
Transactions Internet Technology, 2(2), 115-150.

Guertin N., (2007). (Director, Open Architecture, Program Executive Office IWS 7B). Naval
Open Architecture: Open Architecture and Open Source in DOD, Presentation at “Open Source -
Open Standards - Open Architecture,” Association for Enterprise Integration Symposium,
Arlington, VA, 14 March 2007.

Herz, J.C., & Scott, J. (2007). COTR Warriors: Open Technologies and the Business of War,
The DoD Software Tech News, 10(2), 3-6, June.
https://www.softwaretechnews.com/stn_view.php?stn_id=42

Justice, Brig. General Nick (2007a). (Program Executive Office C3T), Open Source Software
Challenge: Delivering Warfighter Value, Presentation at “Open Source - Open Standards - Open
Architecture,” Association for Enterprise Integration Symposium, Arlington, VA, 14 March.

Justice, Brig. General Nick (2007b). (Program Executive Office C3T), Deploying Open
Technologies and Architectures within Military Systems, Presentation at 3rd DoD Open
Conference, Deployment of Open Technologies and Architectures within Military Systems,
Association for Enterprise Integration Symposium, Arlington, VA, 12 December.

Kazman, R., & Carrière, J. (1999). Playing Detective: Reconstructing Software Architecture
from Available Evidence. J. Automated Software Engineering, 6(2), 107-138.

Kuhl, F., Weatherly, R., & Dahmann, J. (2000). Creating Computer Simulation Systems: An
Introduction to the High Level Architecture, Prentice-Hall PTR, Upper Saddle River, New Jersey.

Meyers, B.C., & Obendorf, P., (2001). Managing Software Acquisition: Open Systems and
COTS Products, Addison-Wesley, New York.

Navy. (2006). Naval OA Strategy. https://acc.dau.mil/oa

Nelson L., & Churchill, E.F. (2006). Repurposing: Techniques for Reuse and Integration of
Interactive Services, Proc. 2006 IEEE Intern. Conf. Information Reuse and Integration,
September.

Noll, J., & Scacchi, W. (1999). Supporting Software Development in Virtual Enterprises, Jour.
Digital Information, 1(4), February.

OSI. (2008). The Open Source Initiative, http://www.opensource.org/

14

http://www.opensource.org/
https://acc.dau.mil/oa
https://www.softwaretechnews.com/stn_view.php?stn_id=42

Riechers, C. (2007). (Principal Deputy, Asst. Sect. of the Air Force, Acquisition). The Role of
Open Technology in Improving USAF Software Acquisition, Presentation at “Open Source - Open
Standards - Open Architecture,” Association for Enterprise Integration Symposium, Arlington,
VA, 14 March.

Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property Law,
Prentice-Hall PTR, Upper Saddle River, New Jersey. http://www.rosenlaw.com/oslbook.htm

Scacchi, W. (2002). Understanding the Requirements for Developing Open Source Software
Systems, IEE ProceedingsðSoftware, 149(1), 24-39, February.

Scacchi, W. (2007). Free/Open Source Software Development: Recent Research Results and
Methods. In M. Zelkowitz (Ed.), Advances in Computers, 69, 243-295.

Scacchi, W., Feller, J., B. Fitzgerald, Hissam, S., & Lakhani, K. (2006). Understanding
Free/Open Source Software Development Processes, Software ProcessðImprovement and
Practice, 11(2), 95-105, March/April.

Scacchi, W., and Jensen, C. (2008). Governance in Open Source Software Development Projects:
Towards a Model for Network-Centric Edge Organizations, Proc. 13th. Intern. Command and
Control Research and Technology Symp., Bellevue, WA, (to appear, June).

Starrett, E. (2007). Software Acquisition in the Army, Crosstalk: The Journal of Defense
Software Engineering, 4-8, May, http://stsc.hill.af.mil/crosstalk.

St. Laurent, A.M. (2004). Understanding Open Source and Free Software Licensing, O'Reilly
Press, Sebastopol, CA.

Weathersby, J.M. (2007). Open Source Software and the Long Road to Sustainability within the
U.S. DoD IT System, The DoD Software Tech News, 10(2), 20-23, June.
https://www.softwaretechnews.com/stn_view.php?stn_id=42

Wheeler, D.A. (2007). Open Source Software (OSS) in U.S. Government Acquisitions, The
DoD Software Tech News, 10(2), 7-13, June. https://www.softwaretechnews.com/stn_view.php?
stn_id=42

15

https://www.softwaretechnews.com/stn_view.php?stn_id=42
https://www.softwaretechnews.com/stn_view.php?stn_id=42
https://www.softwaretechnews.com/stn_view.php?stn_id=42
http://stsc.hill.af.mil/crosstalk
http://www.rosenlaw.com/oslbook.htm

THIS PAGE INTENTIONALLY LEFT BLANK

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2009 Sponsored Research Topics

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 BCA: Contractor vs. Organic Growth
 Defense Industry Consolidation
 EU-US Defense Industrial Relationships
 Knowledge Value Added (KVA) + Real Options (RO) Applied to

Shipyard Planning Processes
 Managing Services Supply Chain
 MOSA Contracting Implications
 Portfolio Optimization via KVA + RO
 Private Military Sector
 Software Requirements for OA
 Spiral Development
 Strategy for Defense Acquisition Research
 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies
 Contracting Government Procurement Functions
 Contractors in 21st Century Combat Zone
 Joint Contingency Contracting
 Model for Optimizing Contingency Contracting Planning and Execution
 Navy Contract Writing Guide
 Past Performance in Source Selection
 Strategic Contingency Contracting
 Transforming DoD Contract Closeout
 USAF Energy Savings Performance Contracts
 USAF IT Commodity Council
 USMC Contingency Contracting

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

Financial Management

 Acquisitions via leasing: MPS case
 Budget Scoring
 Budgeting for Capabilities Based Planning
 Capital Budgeting for DoD
 Energy Saving Contracts/DoD Mobile Assets
 Financing DoD Budget via PPPs
 Lessons from Private Sector Capital Budgeting for DoD Acquisition

Budgeting Reform
 PPPs and Government Financing
 ROI of Information Warfare Systems
 Special Termination Liability in MDAPs
 Strategic Sourcing
 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment
 Individual Augmentation
 Learning Management Systems
 Moral Conduct Waivers and First-tem Attrition
 Retention
 The Navy’s Selective Reenlistment Bonus (SRB) Management System
 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance
 Army LOG MOD
 ASDS Product Support Analysis
 Cold-chain Logistics
 Contractors Supporting Military Operations
 Diffusion/Variability on Vendor Performance Evaluation
 Evolutionary Acquisition
 Lean Six Sigma to Reduce Costs and Improve Readiness

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

 Naval Aviation Maintenance and Process Improvement (2)
 Optimizing CIWS Lifecycle Support (LCS)
 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance

Activity
 Pallet Management System
 PBL (4)
 Privatization-NOSL/NAWCI
 RFID (6)
 Risk Analysis for Performance-based Logistics
 R-TOC Aegis Microwave Power Tubes
 Sense-and-Respond Logistics Network
 Strategic Sourcing

Program Management

 Building Collaborative Capacity
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Collaborative IT Tools Leveraging Competence
 Contractor vs. Organic Support
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to Aegis and SSDS
 Managing the Service Supply Chain
 Measuring Uncertainty in Eared Value
 Organizational Modeling and Simulation
 Public-Private Partnership
 Terminating Your Own Program
 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

	Emerging Issues in the Acquisition of Open Source Software within the U.S. Department of Defense1
	Abstract
	Introduction
	Background
	Understanding open software architecture concepts
	Understanding open software licenses
	Discussion
	Conclusions
	ACKNOWLEDGMENTS

	References

